

Starting an experiment using DBBC and Flexbuff

Fieldsystem

Download all the necessary files.

Modifying downloaded files

In order to create the station-specific files that can be run by the Field System (FS), one needs to run the drudg

program from the sched directory.

drudg on the Field System

Generating station-specific *.prc and *.snp files using drudg :

1. Go to the /usr2/sched directory (cd sched)

2. To start drudg type: drudg sessionName.skd, where the sessionName.skd

is the sked file downloaded from the IVS ftp server

3. Program will ask for the station for which the output should be generated. For this type On (Onsala

station).

4. Show/set equipment type - type: 11 - this option allows to change the type of equipment for which

the SNAP file and procedure are generated. One needs to check using this option whether we are

generating output files for the proper equipment (e.g. Flexbuff and DBBC2/3)

5. Make SNAP file (.SNP) - type: 3 (on a keyboard)

6. Make procedures (.PRC) - type: 12 (on a keyboard)

For prompt Enter TPI period in centiseconds (default is 1000, 0 for OFF)

press ”enter”

7. Print summary of (.SNP) file - type: 5 - prints out the observing schedule

8. Print notes files (.TXT) - type: 51 - prints out the notes from the IVS if the session Name.txt has been

downloaded along with the sessionName.skd

9. To exit drudg type: 0

Adding procedures for flexbuff (No need any more drudg now has support for Flexbuff):

If recording using flexbuff is planned, additional modification of drudged files needs to be done. We use some python

scripts to replace the mk5 commands with flexbuff commands:

1. start fila5cflex.py with arguments SESSION mk5b(recorder type) flex(flexbuff) in usr2/sched/ - this

will store the data on flexbuff in the mk5b format

2. start fila5cflex.py with arguments SESSION vdif(recorder type) flex(flexbuff) in usr2/sched/ - this will store

the data on flexbuff in the vdif format

3. start fila5cflex.py with arguments SESSION mk5b+vdif(recorder type) flex(flexbuff) in usr2/sched/ -

this will store the data on flexbuff in mk5b and vdif format. The recorder type defined before ”+” is the

primary one. In case of the secondary format, scans will be saved on flexbuff using ”od” instead of ”on” (e.g.

”r1776 od 023-1700”

Preparing for flexbuff recordings

Before an observation, the flexbuff intended for recording on should be checked for operation. This can be performed using the

check_flex.py script, which checks whether a flexbuff is powered, running jive5ab, and informs the user how many disks are

available for recording on. Once the flexbuff has been checked, the field system can be started, and it is then necessary to select the

correct flexbuff to be used for recording on. This is achieved by running fmset. Having selected a flexbuff to record on, you can then

initiate a short test recording by using the testrec.py script to check that everything looks OK. This attempts to record around 10s

of data and runs scan_check on the recording. In order for this to succeed, the field system needs to have initialised the flexbuff for the

coming experiment (execute sched_initi, setup01 or similar).

Using check_flex.py

The check_flex.py script exists on all the field systems and can be used for diagnosing issues that may arise with flexbuffs. With

no parameters, it will probe all known flexbuffs, looking for a jive5ab on the correct port for the field system computer the script is

being run from. If successful, it reports the version of jive5ab running on each flexbuff, counts the number of disks available for

recording. If any issues are detected, these are reported at the end, along with hints on what may be performed to fix the issues.

check_flex.py takes 2 possible paramaters; -fb <flexbuff> and -fs <field system>, both of which can be supplied

multiple times.

-fb <flexbuff>

Indicates a specific flexbuff you wish to investigate. Possible options are kare, bogar, and skirner. Without this parameter, all

three flexbuffs will be probed.

-fs <field system>

Indicates the field system you wish to test from. Each field system uses a specific port for communicating with all flexbuffs.

Without this parameter, only the communication port of the field system running check_flex.py will be used. By specifying this

parameter one or more times, you can probe flexbuffs as if you were running check_flex.py on other field systems. A special

option -fs all probes for all 4 field systems; fold, rane, fulla, and freja.

As an example,

check_flex.py -fb flexbuff1 -fb flexbuff2 -fs fs1 -fs fs2

checks jive5abs on both bogar and kare for both rane and fold.

To receive the datastreams from a DBBC it needs to listen on the correct network port and it does that with the program “jive5ab”.

”ssh flexbuff ”

”StartJ5 mk5b -p32620” or ”StartJ5 vdif -p32620” to store the data flow in the mk5b+ or vdif format,

respectively

”StartJ5 mk5b -p32620” and ”StartJ5 vdif -p32620” to store the data flow in the mk5b+ and in the vdif format

DBBC2/3 setup:

The DBBC2/3 are windows XP based systems that simply listens on a network port when it has configured the

electronics.

Usually there is no need to start the DBBC2 (DBBC2 control v105 executable) since it is running all the time.

If not just double click the executable and answer “Y”

Here the setup is complete and now it listens on port 4000.

Fieldsystem

. start schedule

. type setupsx

. sy=dbbcpath xs (selecting S/X for the DBBC)

. type collect - displays values related to DBBC

 Attenuation from the collect command:

 2016.326.15:05:25.88/ifa/1,agc,2,38000,44,38133

 2016.326.15:05:25.88/ifb/1,agc,1,38000,38,38103

2016.326.15:05:25.88/ifc/1,agc,2,38000,63,43332

2016.326.15:05:25.88/ifd/1,agc,2,38000,63,38192

. Bold is the target value you should aim for. Setting attenuation level (dB) to fit the target

values is possible using dbbcatt command:

sy=dbbcatt 1/2 (S or X band) val (value of attenuation in dB (1-11)) This will lover last

values of each line.

Do clock offset reading.

Do a pointing check.

Do a cable delay reading.

Start the session:

. type proc=xxx - switch back to the observing procedure

. type log - check whether the proper log file is used

. type schedule - check whether the proper schedule file for station is used

. check whether the time is synchronized with fmset (ctrl+shift + t)

. type caltsys - displays system temperatures of used channels

. type cont - starts observing procedure; antenna will start tracking the first source of the schedule and the

measurements will start automatically in accordance to the schedule for the station

Verify the attenuator levels again with collect and dbbcatt

. type mk5relink - resets the tie - not mandatory if clock offsets are correct; behaves the same as cont

. type sched initi - initializes schedule and sets back the clock offsets; type this command if something is

messed up with the clock offsets or Fila.

. Type testrec.py on fs in a new terminal window to run a trial recording test

. Turn on the bandpass plot– type ”gv bpass” on FS in a new terminal window in order to turn on the

creation of the plot with autocorrelation for each channel. This will be updated once a while during the

experiment.

. type checkmk5 to update the correlation plot.

Controlling recordings on the flexbuff in different ways

Do a normal scan_check?

Scan check output should look something like this:

2019.091.18:07:30.69/scan_check/?,vt9091_oe_091-1806,VDIF,128,2019y91d18h6m56.1460s,30.0396s,64.000000,-402976,8224

2019.091.18:07:30.69/mk5_status/status,0x00000001

2019.091.18:07:30.69/mk5/!net_protocol? 0 : udpsnor : 67108864 : 268435456 : 8 ;

2019.091.18:07:30.69/mk5/!mtu? 0 : 9000 ;

2019.091.18:07:30.69/mk5/!rtime? 0 : 142237s : 146219GB : 38.5311% : VDIF : 2 : 0MHz : 8224Mbps ;

Login onto flexbuff and then type: ls /mnt/d*/sessionName*

in terminal to check whether something has been transferred to the flexbuff. Check a size of the newly recorded

files: ”vbs ls -lvt sessionName*”

Testing data recording on flexbuff (this is done automatic, it’s added in “scan_check”) :

This is a script that takes 10 secs of data and transfers it to the flexbuff where it uses m5spec and m5bstate to generate a postscrip

tfile that’s transferred back to the FS and displayed with Ghostview.

Execute testrec.py to carry out a test recording of data onto flexbuff, (it takes 10 seconds of data). Then

check the displayed status of the code and look also into a login shell for the output from the field system.

View of FS during session

	Fieldsystem
	Download all the necessary files.
	Modifying downloaded files
	DBBC2/3 setup:
	The DBBC2/3 are windows XP based systems that simply listens on a network port when it has configured the electronics.
	Usually there is no need to start the DBBC2 (DBBC2 control v105 executable) since it is running all the time.
	If not just double click the executable and answer “Y”
	Fieldsystem
	. start schedule
	. type setupsx
	. sy=dbbcpath xs (selecting S/X for the DBBC)
	Do clock offset reading.
	Controlling recordings on the flexbuff in different ways

