

ANTENNA AND AMPLIFIER MODELING FOR HIGH-ACCURACY CALIBRATION OF RADIO DATA

By: Delani Cele Mentor: Alan E.E. Rogers

Overview

- Epoch of Reionization
- EDGES Project
- Measurements and Calibrations
- West Forks Trip
- Data Analysis
- □ Conclusion / Future Work

<u>Epoch of</u> <u>Reionization</u>

-The Big Bang occurs

-300,000 years later neutral hydrogen forms.

-About 500 million years after the Big Bang, the stars and galaxies began to form, emitting ultra-violet radiation.

-This period is known as the Epoch of Reionization (EoR)

- Redshifted 21cm emission line of neutral hydrogen

Redshifted 21cm Hydrogen Line

EDGES Project

- The Experiment to Detect the Global EoR Step (EDGES)
- The Approach
 radio antenna and
 - spectrometer

Required Measurements for a Calibration of the Sky Noise Spectrum

- Measurement of balun loss.
- Accurate measurements of balun s-parameters.
- Accurate measurements of antenna reflection coefficient.
- □ Flat Spectrum noise source.

Measurements of Balun S-Parameters

-What is a balun?

-Use of balun

-What is a s-parameter?

-2-port Vector Network Analyzer (VNA). Model: N9923A FieldFox Handheld RF Vector Network Analyzer made by Agilent Technologies

-Low loss balun a back-to-back measurement for good estimate.

 $\mathrm{dB} \approx 20 \log_{10} |S_{21}|$

Measurements of Balun S-Parameters

Antenna Impedance

Location

- MIT Haystack
- Not optimal location
- Problems
 - Ground Plane (cement vs.
 Aluminum)
- Comparisons
 - **D** Types of ground planes

Effect of Ground Plane

Antenna Impedance

Measurements and Calibrations

Balun Corrections

 $\Gamma_{ant} = \frac{z_{ant} - 50}{z_{ant} + 50}$ -Feko provides us with the impedance Z_{ant} $\Gamma_{ant+bal} = S_{11} + \frac{S_{12}S_{21}\Gamma_{ant}}{1 - S_{22}\Gamma_{ant}}$ -S-parameters from balun

Hot Thermal Noise for Calibration

-Internal noise diode -HP246C noise source flatness variance -Hot noise source

HP346C Flatness	Varia	<u>nce</u>
Freq MHz	ENR	dB
10	12.7	0
100	12.8	32
1000	12.7	73

West Forks Plt.

Established 1893

Welcome 💮 Bienvenue

-Difficulties finding radio

quiet zone

-West Forks, ME

-Hopes for Trip

Using the river as a highway

In the early 1800s, numerous logging operators began using the Kennebec River for transportation purposes. In 1835, the Kennebec Log Driving Company was formed to

coordinate river driving activity for 64 different logging contractors.

At the peak of its operation (1893), the KLD handled a record 188 million board feet

La rivière, une autoroute

Au début des années 1800, de nombreuses exploitations forestières ont commencé à se servir de la rivière Kennebec comme moyen de transport. En 1835, on a constitué la Kennebec Log Driving Company (KLD) pour coordonner les activités de flottage, ou drave, autrès de 64 entrepreneurs.

Au plus fort de ses activités (1893), la KLD-a établi un record quant à la quantité de billes de hois transportées : 188 millions de pieds-planche

A / red = West Forks, ME Yellow = MIT Haystack

West Forks Trip

West Forks Trip

Ground Plane Placement

Antenna and ground plane

- -Map of field where data was taken.
- -Black = ground plane, white = antenna. not to scale

Ground plane wire

Antenna S₁₁ Return Loss

Amplitude of Antenna with Different Ground Planes and FEKO n -5 Feko -10 MIT. 명 -15 The Forks Test 1 The Forks Test 2 -20 West The Forks Test 3 Fork The Forks Test 4 -25 Aluminum Sheet Feko Aluminum Sheet -30 50 80 90 40 60 70 100 110 120 Frequency MHz

West Forks Trip

-West Forks vs. Haystack -Difference in Ground Planes -West Forks return loss test

Data Anaylsis

$$f u$$
 Brightness temperature power law $T_{sky} \, \propto \, v^{-eta}$

Model for brightness temperature

$$T_{sky}(v) = T_{50} \left(\frac{v}{v_{50}}\right)^{-\beta}$$

 T_{50} is the temperature at $v_{50} = 50 MHz$.

Data Analysis

Best fit lines results $T_{50} = 5060 \text{ K}, \beta = 2.51 \pm 0.05$

Conclusion / Future Work

- Better balun measurements
 - Mutli-port balun measurements
 - Mutli-port VNA
- Calibration of hot noise source
- Better radio quiet zones
- Test antenna in Mileura Station in Western Australia

Acknowledgements

- □ Alan E.E. Rogers
- Judd Bowman, professor at Arizona State University
- Hamdi Mani, undergraduate at Arizona State University
- Everyone at MIT Haystack

Sky Spectrum Calculations

$$\Box T_u(f) = \left[\frac{P_{sky}(f) - P_{load}(f)}{P_{cal}(f) - P_{load}(f)}\right] T_{cal} + T_{load}$$

- \square P_{sky} Power spectrum on the sky
- \Box P_{load} Power spectrum on the load
- *P*_{cal} Power spectrum on the load and calibration
- $\Box \ T_{cal} \ {\rm Internal \ calibration \ spectrum} in \ {\rm K}$
- $\Box \ T_{load} \ \text{Ambient temperature of the} \\ \textbf{load}$
- \Box T_u Uncorrected sky temperature

 $T_{sky} = \frac{T_u - T_{amb}(1 - L) - T_{amb}(1 - L)|\Gamma|^2 L}{(1 - |\Gamma|^2)L}$ $L = 10^{-\frac{(L_g + L_a + L_b)}{10}}$ $|\Gamma|^2 = 10^{-\frac{(L_b - L_r)}{10}}$ $L_g \text{ ground loss} \approx 0.2 \text{ dB}$ $L_a \text{ attenuator} = 6.0 \text{ dB}$

- L_b balun loss \approx 0.3 dB
- L_r antenna return loss measured through balun in dB positive for loss
- \Box T_{amb} ambient temperature