

GPU Based Polyphase Filter Banks for VLBI

Mark McCurry Christopher Beaudoin & Geoff Crew

MIT Haystack REU Program 2011

GPU Based Polyphase Filter Banks for VLBI

	Implemenation		Conclusions
00			

Outline

Introduction What is being done? PFB Hardware Implemenation CUDA Results Quality Quantity **Future Work** Conclusions

• 000 00 0 0 What is being done?	Introduction		Conclusions
What is being done?	• 0 00		
that is being denot	What is being done?		

▶ Input of Analog values from data source near 4 Gb/s

Introduction		Conclusions
What is being done?		

- Input of Analog values from data source near 4 Gb/s
- Perform Polyphase Filter Bank (PFB) on a Nvidia GPU

Introduction		Conclusions
What is being done?		

- Input of Analog values from data source near 4 Gb/s
- Perform Polyphase Filter Bank (PFB) on a Nvidia GPU
- Output of channelized frequency spectrum

Introduction		Conclusions
ŏo	Ŭ	
What is being done?		

- Input of Analog values from data source near 4 Gb/s
- Perform Polyphase Filter Bank (PFB) on a Nvidia GPU
- Output of channelized frequency spectrum
- All of this done in realtime

Introduction		Conclusions
<u> </u>		
00		
PFB		

Polyphase Filter Bank

Two Channel Polyphase Filter Bank

Introduction		Conclusions
0 0 ● 0		
Hardware		

Roach Digital Backend (RDBE)

Introduction		Conclusions
0		
00		
Hardware		

Nvidia GPUs

	Implemenation		Conclusions
	000		
00			
CUDA			

What is CUDA?

	Implemenation 000		Conclusions
CUDA			
CUDA			

	Implemenation 000		Conclusions
CUDA			
CUDA 2			

//Setup via cudaMemcpy

//input and output are on the GPU
cu_unquantize <<<10,10>>>(output, input, 100);

//Return via cudaMemcpy

	Implemenation	Results	Conclusions
		00	
00			
Quality			

Quality of output: Actual

	Implemenation	Results	Conclusions
		00	
00			
Quality			

Quality of output: Matlab

	Results	Conclusions
	•	
66		
Quantity		

Table: Performance of GPU Code¹

Performance Metrics	Data Input Rate
Reference Implementaiton	744 MB/s
No extra channels	540 MB/s
Hardcoding FIR size	756 MB/s
Hardcoded FIR, Hand Tuned Block Size	890 MB/s
Using $1/10 \text{ cost } 470 \text{GTX}$	637 MB/s

¹As of August 1st

GPU Based Polyphase Filter Banks for VLBI

Implemenation		Future Work	Conclusions
000	00		

Increasing Speeds

How to proceed:

Profiling, and extensive testing

	Future Work	Conclusions

Increasing Speeds

How to proceed:

- Profiling, and extensive testing
- Effective use of CUDA resources

	Future Work	Conclusions

Increasing Speeds

How to proceed:

- Profiling, and extensive testing
- Effective use of CUDA resources
- Waiting for new cards

		Conclusions
00		

CUDA makes heavyweight software processing possible

GPU Based Polyphase Filter Banks for VLBI

		Conclusions
00		

- CUDA makes heavyweight software processing possible
- Real time processing is possible at lower rates

Implemenation		Conclusions

- CUDA makes heavyweight software processing possible
- Real time processing is possible at lower rates
- GPU processing is applicable to Astronomy and scientific computation

