Solar Radio Event Detection with the MWA

Brian Timar Victor Pankratius Colin Lonsdale U. California Berkeley MIT Haystack Observatory MIT Haystack Observatory

Intro: Coronal Radio Emissions

Coherent emission – at plasma frequency or 1st harmonic

Plasma frequency scales like square root of local electron # density

Goal: identify, extract and characterize previously unknown Type IIIlike radio events automatically (~1s duration, high drift rates).

The Murchison Widefield Array

- Tile signals are quantized before being passed to correlator.

- 24 * 1.28 MHz coarse channels, out of 80-300 MHz. Work with contiguous data.

Single MWA tile

Van-Vleck Corrections

-Quantized correlation =/= Analog correlation at inputs

- For given autocorrelation statistics and quantization levels, we can determine the relationship numerically

- *Nonlinear* – although approximately linear at low correlations

-Measured autocorrelations are also affected

$$\rho = \frac{\operatorname{Cross}(s_1, s_2)}{\sqrt{\operatorname{Auto}(s_1) * \operatorname{Auto}(s_2)}}$$
$$\operatorname{Cross}(s_1, s_2) := \frac{1}{T} \int_0^T s_1^*(t) s_2(t) dt$$
$$\operatorname{Auto}(s_1) := \frac{1}{T} \int_0^T |s_1(t)|^2 dt$$

Pipeline

[1] Preprocessing

[2] Segmentation

- Retrieve subsets of image corresponding to events
- Focus on short timescales, high drift rates

[2a] Region Growing

[2b] Wavelet Decomposition

[3] Database

- Events characterized by time duration, bandwidth, max. intensity, etc.

-Logged in query-based database for permanent storage

>>>	• df.head(5)								
	msname	e cent_t	ime cer	nt_freq	deltat	deltaf	\		
0	1032149704-%b_T1-3.DS.dat.	p 11.652	542 0	.024777	30	0.00017			
1	1032149704-%b_T1-3.DS.dat.	p 11.441	176 0.	.030280	26	0.00009			
2	1032149704-%b_T1-3.DS.dat.	p 14.500	000 00	.030605	10	0.00021			
3	1032149704-%b_T1-3.DS.dat.	p 13.260	563 0.	.021787	4	0.00043			
4	1032149704-%b_T1-3.DS.dat.	p 13.813	433 0	.023071	4	0.00022			
			• • • •	~		e			
	mean_intensity max_intens	ity freq	_point1	freq_po	oint2	freq_point3	3 \		
0	0.023643 0.960	097 0	.599920	0.61	9785	0.592757	7		
1	-0.019599 0.8414	422 0	.593024	0.56	51744	0.554479)		
2	-0.016459 0.628	802 0	.542501	0.58	32737	0.529195	5		
3	0.001167 0.570	673 0	.542352	0.40	3601	0.389365	5		
4	0.004670 0.615	377 0	.545244	0.40)5549	0.440699)		
	for a state allow allows					•			
	rreq_point4 slope class	s evindex	anti	antz pol	. times	tamp			
0	0.602834 0.000034 Non	e None	1	3 XX	(None			
1	0.595576 -0.000018 Non	e None	1	3 XX	(None			
2	0.394268 -0.000567 None	e None	1	3 XX	(None			
3	0.540622 0.000334 Non	e None	1	3 XX	(None			
4	0.586077 -0.000325 Non	e None	1	3 XX	(None			
[5									
L 2									

Compute correlations, other statistics on demand.

[4] Example: Alpha Commissioning

Region-growing on 53 Alpha sets

[4] Example: Alpha Commissioning

Wavelet decomposition on 73 Alpha sets:

Results

Out of 20 sample Alpha sets:

Alpha Commissioning Success Rates:									
Segmentation Type	True Positives	False Positives	False Negatives						
Region Growing	56	76	46						
Wavelets	59	35	84						

No significant correlations in parameters sampled.

Error sources

Conclusions

Automated event recording is feasible over a range of solar activity levels, but robust RFI removal is imperative Segmentation strategies may differ based on activity levels Future work:

- "Sampling in 4D" & imaging the solar disc
- Application of classification tools
- Robust autoflagging

Acknowledgements

Many thanks to:

- Victor Pankratius, Colin Lonsdale, Divya Oberoi, Roger Cappallo, Phil Erickson, Vincent Fish, Lynn Matthews, Tim Morin, Jason Soohoo, K.T. Paul, Heidi Johnson ...

+ all of Haystack!

-The N.S.F.

References

- (1) Oberoi et al. "First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype". *Astrophysical Journal Letters.* Volume 728, Issue 2, article id. L27, 7 pp. (2011). [8]
- (2) Joachim Köppen @ Institut für Theoretische Physik und Astrophysik der Universität zu Kiel; Personal website.