Radio Science Education at Haystack

John Swoboda

Software

MIT HAYSTACK OBSERVATORY

Python and Anaconda

- Programing language
- Open-source
- Free!
- Many scientific libraries
- One of the most used programing languages

- Package manager
- Free!
- Compatible with Windows Mac and Linux
- Avoids having to build from source
- Can create environments

Jupyter Notebooks

• Documents "containing code, visualizations and narrative text"

• Allow for easy sharing in education environment

• Used in the remote ISR Summer School

<mark>MIT</mark> HAYSTACK OBSERVATORY

		jupyte
(2);	<pre>slideTi = ipywidgets.TloatSlider(value=1000., min=500., max=5000., step=500., description="fillin K;', disabled=walse, continuous_update=salse, orientation="horizontal', readout=True, readout=True,</pre>	
	<pre>slider_color_white slider_color_white value=1000., mar5001., step=500., description='The in Kt', disabled-walse, continuous_update=sale, orientstion='Apriate=sale, orientstion='Apriate=sale, orientstion='Apriate=', readout_format=',if', slider_color='white' } ==ipywidgets_interactive(plotldspec,fi=slidefi,fe=slidefe)</pre>	
	<pre>output = w.children(-1) output.layout.height = "000px" output.layout.width= '100%' display(w)</pre>	
	T) In K: 1000.0	
	Teink: 1500.0 Calculating Gordeyew int felctons No collisions No magnetic field Calculating Gordeyew int for ion species #0 No collisions No magnetic field	
	Figure 5	O
	Spectra K=18.4 ACF K=	18.4
	02 02 02 02 02 02 02 02 02 02 02 02 025	_
	00 -10 0 10 -0.50	econds 43
	H T T U U	

GNURadio

- Tool kit to implement software radios
- Includes signal processing tools
- Contains a GUI interface for making flow graphs to implement radio processes

Digital RF and Digital Metadata

- Self-documenting for data archival
- O(1) sample lookup for quickly reading any segment of data
- Included with package:
 - Easy-to-use command-line program for data recording: the Haystack Observatory Recorder (thor)
 - Snapshot and ring buffer tools
 - Plotting tools built in for easy debugging and for RF quicklook spectrograms
 - Geophysical measurement examples
 - Satellite beacon receiver
 - Ionospheric sounder

Digital RF/Metadata file structure

Open Radar Workshop

МІТ
HAYSTACK
OBSERVATORY

	Philip) Erickson	Ryan Volz	Diego Peñaloza	A				
a 181 % 18	The set of H	dden Fries. 🚍 Control	File Edit	View Go Bookma	rka Tools	Settings Help		
* * + → + C	御風	Figure 1			- 90 -	Sut Stoom In	e Browse () Zoom () on Software Aure 1" and 2"	Radio
140	-	A STREET			80			
138 -	1211				70	c mina-110 -r 8:200 c mina-110 -r 1708 intertor (after third col	0:2000 -1 -2 0:00 -3 +11 2708:2000 -1 -2 0:00 -5 +11 on) indicating the number of p	alac
136 -			- state		60	c misa-1:0 -r 1708; c misa-1:0 -r 1708; c misa-1:0 -r 1708;	11708:2000:5 -1 -p rti 101700:2000:50 -1 -p rti 101700:2000:50 -1 -p power	
134 - Ê	-110				50	data before plotting th ads in the code (it ass then, after the color, i	hat is matched to a specified surfes you're using a Barker co the number of samples per base	de or å In
9 132 - 60 21 130 -	1110				40	c misa-1:0 -r 1708: c misa-1:0 -r 1708:	101708:2000:50 -1 -p power 101708:2000:54 -1 -p Pti -m	# 7:# 7:6
128 -	120	12 14	in the		20	e data? (Hint: identify fint: what happens ch sell you?	the 2 ms pulse periods.) osely after the pulse?)	
126 -	Contraction of	100	Second State		10	iter that is matched to	the waveform? Do you notice	
124				000.	0			
The former of the second s				ALL COL	lini: there are two really good ones between 10:02:25 and 139-10-1071(0:02:25" to start the plot at the specified time). Jung work (i.e. resolve the target to a point) on a head			5 and 1 timer). d
		time (seconds)				through the radar bea 1 data.) How might ye	m (aliased in range, of course) si know this object is a satellite	and
im réct		6.4.4.6		Direction Composition	Internation 107	o process the data, usi	ing the digital_rf package for k implement a matched filter? C	an you

Attendees (0)

4 01

4 00

1 01

¥ 0

