Sub-millimeter photometry of the magnetic cataclysmic variable AR Sco

P. E. Barrett (GWU), M. Gurwell (CfA)

AR SCO SYSTEM PARAMETERS

- AR Sco is magnetic cataclysmic variable (MCV)
- Discovered by Marsh *et al.* 2016 [1]
- D = 117.05 ± 0.15 pc, V = 14.75
- Binary: white dwarf (WD) + red dwarf (RD)Rapidly rotating magnetic WD:
- P_{orb} = 3.56 hr, P_{spin} = 117.20 s • Roche lobe overflow: WD accretes material from RD • Radio emission (2-1000 GHz): $\alpha \propto 0.5$, (S_v $\propto v^{\alpha}$)

SYNCHROTRON MODEL PARAMETERS

Parameter	Fast-cooling	Slow-cooling
v _a (Hz)	< 10 ¹⁰	< 10 ¹⁰
v _m (Hz)	< 10 ¹⁴	1.5 x 10 ¹¹
v _c (Hz)	4 x 10 ¹¹	10 ¹⁵
n _e (cm⁻³)	3.3 x 10 ¹²	1.9 x 10 ¹³
р	1.0	1.3
ε	-0.7	-0.9
B (G)	1	1
R (cm)	10 ¹²	10 ¹²
L (cm)	10 ¹	10 ³

AR SCO SPECTRAL ENERGY DISTRIBUTION

- Implies synchrotron emission
- B = ~500 MG estimated, based on spin down power
- Suggest high magnetic field caused by WD crystallization generating a strong dynamo

AR Sco Photometry

Submillimeter Array (SMA), Mauna Kea, HI
One ≈1 hr observations at 210 GHz
2022 April 9
One ≈1 hr observations at 354 GHz
2022 May 16
Periodogram: signal at 2v_{spin}
Frequency: 0.01705 mHz (58.65 s)
Amplitude: 8.5 mJy (7%)

CONCLUSIONS

• The 1st harmonic of the spin frequency shows the synchrotron emission is associated with the dipolar magnetic field of the WD

• The fast timescale of the flares indicates that magnetic reconnection is the likely primary injection mechanism for electron acceleration

• The lack of synchrotron self absorption constrains the magnetic field to be <1 G

•The low magnetic field of the emission region implies a low magnetic moment (~10³³) for the WD

•AR Sco is a magnetic propeller, like AE Aqr

FUTURE WORK

• Use VLBI to localize and constrain the emission region

• Develop more detailed models of the synchrotron emission to explain the steep spectral slope between 22 – 210 GHz

REFERENCES

[1] Marsh, T. et al. 2016, Nature, 537, 374
[2] Barrett, P. & Gurwell, M. 2024, in prep.

•SMA

Four ≈1 hr observations at 210 GHz
<f_v> = 113.6 ± 1.2 mJy/beam (●)
One ≈70 min observation at 345 GHz
<f_v> = 88 ± 11 mJy/beam (●)
∨LA

•One 4 hr K band observation at 22 GHz • $< f_{\nu} > = 12-22 \pm 0.3 \text{ mJy/beam}$ (

- Fitted synchrotron spectral energy distribution
 Slow-cooling model (solid)
- Fast-cooling model (dashed)
- •50 K blackbody (solid)
- •RD blackbody (solid)
- •WC blackbody (solid)

235th AAS Meeting – Honolulu, HI