

Australia's National Science Agency

Radio Emission from Magnetic Massive Stars

Barnali Das | April 19, 2024

Bolton Research Scientist CSIRO Space & Astronomy, Kensington, WA, Australia Contact: Barnali.Das@csiro.au

Radio Stars in the era of New Observatories, MIT Haystack Observatory, Westford, MA, USA

I would like to begin by acknowledging the Whadjuk people of the Noongar nation as the Traditional Owners of the land that I live and work, and pay my respect to their Elders past and present.

Magnetic massive stars

- Occupy the 'upper main-sequence'
- ~10% have <u>large-scale</u> (often dipole-like) magnetic fields that are extremely <u>stable</u>

(Credit: NASA/SDO/AIA/LMSAL)

(Credit: ESO)

Why are they interesting?

(Credit: R. Townsend, Townsend & Owocki 2005)

Radio emission: why should we care?

- Ha, a key probe, is not observed below $T_{\rm eff}{\sim}15$ kK, but radio is observed over a much wider $T_{\rm eff}$ range
 - Allows us to test whether a common scenario exists for all magnetic early-type stars
- Most similarities between magnetic hot and magnetic (ultra)cool objects are observed at radio bands
 - Huge potential for being used as celestial laboratories

Types of radio emission

Incoherent radio emission

(Leto et al. 2021)

- Radio emitting sites are located along the magnetic axis (Linsky et al. 1992, Leone & Umana 1993 etc.)
- Violates the GB relation (Leto et al. 2017, 2018)

(Leto et al. 2017)

First scaling relation

(Linsky et al. 1992)

 $x = \dot{M}^{0.43} B_{\rm rms}^{0.97}$

Scaling relation: revisit in 2021-2022

Radiation belt in magnetic massive stars?

(Leto et al. 2021)

Centrifugal breakout (CBO)

CSIRO

(Shultz et al. 2022, Owocki et al. 2022)

Centrifugal breakout (CBO)

$$L_{\rm CBO} \approx \dot{M} \Omega^2 R_*^2 \eta_{\rm c}^{1/p}$$
.

$$\eta_{\rm c} \equiv \frac{B_{\rm d}^2 R_*^2}{\dot{M} v_{\rm orb}}$$

$$L_{\rm CBO}(p=1) \equiv W\Omega R_*^3 B_{\rm d}^2,$$
$$L_{\rm CBO}(p=2) = \frac{L_{\rm CBO}(p=1)}{\sqrt{\eta_{\rm c}}}.$$
$$\propto \dot{M}^{0.5} B$$

(Owocki et al. 2022)

First scaling relation

(Linsky et al. 1992)

 $x = \dot{M}^{0.43} B_{\rm rms}^{0.97}$

Coherent radio emission

- First discovered by Trigilio et al. (2000) from a magnetic late B star CU Vir
- Key properties:
 - Periodic radio pulses with ~100% circular polarization
 - Observed close to the 'magnetic nulls'

Coherent radio emission

- Mechanism was identified as electron cyclotron maser emission (ECME, Trigilio et al. 2000, 2008)
 - Intrinsically a narrow-band emission
 - Emission frequency is proportional to the magnetic field strength, higher frequencies are produced closer to the star and vice-versa
 - Highly directed emission
- We named them 'Main-sequence Radio Pulse emitter' (MRP, Das & Chandra 2021)
- Probably ubiquitous among magnetic massive stars (Das et al. 2022)

(Figure made based on Trigilio et al. 2011, Leto et al. 2016)

- Pulse properties observed near different magnetic nulls aren't identical
 - Dependence on stellar orientation w.r.t. the observer

- Pulse properties observed near different magnetic nulls aren't identical
 - Dependence on stellar orientation w.r.t. the observer
- Pulses can appear significantly away from the magnetic nulls!
- What are we missing?

The importance of obliquity

(Video credit: Chris Russell, based on RRM model by Townsend & Owocki 2005, density grid: V. Petit, B. Das)

The importance of obliquity

- Both stars have obliquities ~80 degrees!
- We cannot ignore the density gradients in the magnetospheres!

How does obliquity change the 'expectation'?

(Simulation based on Das, Mondal & Chandra 2020)

CSIRO

Can we see some of those non-trivial features in data?

MeerKAT observation of an extreme oblique rotator

• Predicted that there will be secondary pulses based on the known stellar parameters (using the framework of Das, Mondal and Chandra 2020)

Coherent vs Incoherent Radio Luminosity

Coherent vs Incoherent Radio Luminosity

Does radio has a dependence on temperature?

(Data from Leto et al. 2021) CSIRO

Open questions/unexplored avenues

- Role of *T_{eff}*/mass-loss rate in radio production/inhibition
 - Expand the sample (use surveys such as VAST, talk by T. Murphy and L. Driessen)
- Stellar parameters controlling properties of coherent radio emission including cut-offs
 - Expand the sample of MRPs, more wideband observation
- MRPs below 400 MHz
 - Lowest frequency detection at 200 MHz (Lenc et al. 2018), but only 1 such MRP
- Magnetic massive stars at mm-band, only 2 stars observed above 50 GHz
- VLBI observations of magnetic massive stars
- Investigation regarding the magnetic hot star-cool star connection!
- And many more...

Need of the hour: more data, more data and more data!!!

VAST project to study Magnetic Massive Stars (VAST-MeMeS)

Barnali Das, Laura Driessen, Joshua Lee, James Leung, Joshua Pritchard, Kovi Rose, Matt Shultz, Gregory Sivakoff, Yuanming Wang, Andrew Zic

Current status: 20 new radio-bright hot magnetic stars, 3 MRP candidates

Magnetic massive stars in the era of new observatories provide one of the widest and most interesting avenues for discoveries!!!

CSIRO

Barnali Das

CSIRO Space & Astronomy

Barnali.Das@csiro.au