

Pushing for higher precision VLBI astrometry of radio stars

Paul Boven (JIVE, Leiden University) Geoffrey Bower (ASIAA) Joe Callingham (ASTRON, Leiden University) Harish Vedantham (ASTRON, Groningen University) Jay Blanchard (NRAO) Huib Jan van Langevelde (JIVE, Leiden University, EHT)

Stellar Radio Emission - Why VLBI?

• Study Emission Mechanism

- Good sensitivity
 - EVN achieves $20 \,\mu Jy$ in one hour at L-band
 - Still requires non-thermal emission
- $\bullet\,$ Polarization of the emission (H/V and L/R)
- Lightcurve to study flares
- Spectral propeprties
- High astrometric accuracy
 - Comparable to Gaia
 - Match optical against radio position
 - Resolve close binaries
 - Sensitive to face-on orbits
 - Complementary to RV and transit methods
 - Find companions through reflex motion

Image Courtesy SDSS DR16

Ross 867/868

- A&P selfcal on phase reference targets
- Imaged against each other
- Scale: Dec. ticks: 5 mas
- Note the symmetries

E.P. Boven e.a.

Ross 867/868

E.P. Boven e.a.

Higher precision VLBI astrometry

• Close M dwarf binary, V* DG CVn, 2x M4Ve

- Only one is radio loud
- Optical separation up to 0.2" (projected)
- Observed 2007 2010 in G. Bowers 'RIPL' project
 - Radio Interferometric Planet Search
 - VLBA X-band
 - Detected in 10 out of 12 epochs
 - RIPL only included stars closer than 10 pc (or did they?)
 - VLBI results remained unpublished due to puzzling astrometric residuals

GJ3789 in Gaia

- DR2: $\varpi = 54.69 \pm 0.33 \text{ mas}, \text{PM}_{\alpha \cos \delta} = -232.8 \pm 0.5 \frac{\text{mas}}{\text{year}}, \text{PM}_{\delta} = -149.8 \pm 0.3 \frac{\text{mas}}{\text{year}}$
- DR3: only photometry remains...

- $\bullet\,$ Astrometric follow-up on GJ3789 A/B / DG CVn
- Awarded 4x7 hours 4Gb/s X-band
- Full polarization to measure circular polarization

GJ3789 detection in BB451A

Fitting a binary orbit - MCMC

- 12 Parameter model
 - Position (R.A. and Dec.)
 - Proper motion $(\mu_{lpha}, \mu_{\delta})$
 - Parallax (ϖ)
 - Binary Period (P)
 - Semi-Major Axis (a) [mas]
 - Ellipticity (e)
 - Inclination (i)
 - Argument of Periapsis (ω)
 - Longtitude of ascending node (Ω)
 - Periapsis epoch (T0)

CC-BY-SA 3.0 by WikiMedia user Lasunncty

Fitting a binary orbit - MCMC

E.P. Boven e.a.

Updated Orbital Model

Orbital Model - Preliminary Data

Par.	Value	Uncert.	Unit				
R.A.	202.9436479	1e-8	deg				
Dec.	29.27652107	1e-8	deg				
$PM_{\alpha \cos \delta}$	-233.63	0.02	mas/year				
PM_δ	-143.77	0.01	mas/year				
ϖ	54.97	0.02	mas	(18.193 pc)			
а	70.411	0.04	mas				
ω	141.2	0.15	deg				
Ω	110.5	0.1	deg				
i	-50.57	0.06	deg				
е	0.7619	8e-4					
Р	1648.0	0.2	days	(4.5 years)			
Т0	903.9	0.2	days				
$a = a = 10.24 \pm 4282.27 \pm 7$							

epoch = JD 2454382.2757

Orbital Model - Preliminary Data

Par.	Value	Uncert.	Unit				
R.A.	202.9436479	1e-8	deg				
Dec.	29.27652107	1e-8	deg				
$PM_{lpha \mathbf{cos} \delta}$	-233.63	0.02	mas/year				
PM_{δ}	-143.77	0.01	mas/year				
ϖ	54.97	0.02	mas	(18.193 pc)	All values to at		
а	70.411	0.04	mas		least 4 significant		
ω	141.2	0.15	deg		digite		
Ω	110.5	0.1	deg		uigits		
i	-50.57	0.06	deg				
e	0.7619	8e-4					
Р	1648.0	0.2	days	(4.5 years)			
Т0	903.9	0.2	days				
epoch = JD 2454382.2757							

Astrometric Residuals - Preliminary

The Optical Picture

VLBI with next gen arrays

- Chasing phaserefs = loss in sensitivity
 - Target + 3 phaserefs = 50% loss
 - Additional loss due to slewing
 - Cycle time may not match ionospheric turbulence
- More phaserefs is preferable
 - Consistency check
 - Higher order solutions
- Ideal: in-beam phaserefs
 - Smaller dishes
 - Beamform N local small dishes to improve sensitivity
 - Beams for target + at least 3 PR
 - Cheaper than a single large dish
 - High bandwidth

Conclusions, and a puzzle

- VLBI astrometry can be a useful tool to study stellar systems
- MultiView to mitigate ionospheric turbulence and increase astrometric accuracy
- $\bullet\,$ Full and accurate 5D astrometry solution for GJ3789 A/B

Conclusions, and a puzzle

- VLBI astrometry can be a useful tool to study stellar systems
- MultiView to mitigate ionospheric turbulence and increase astrometric accuracy
- $\bullet\,$ Full and accurate 5D astrometry solution for GJ3789 A/B

